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Abstract:  One of the most damaging security threats on the Internet today is cyberattacks. As new paradigms emerge, new 

vulnerabilities and flaws are discovered on a daily basis. These vulnerabilities have been consistently exploited by 

malicious users to stage cyberattacks, which erode the confidentiality, integrity and availability of critical data, and 

other computing resources. In recent times, the research focus has been on signature based and anomaly detection 

approaches. However, the challenges of using known attack signatures and profiles have made the prediction of 

attacks an elusive and cumbersome activity. The use of task specific algorithms has also created more setbacks in 

cyberattack prediction, hence the need for new approaches that exploit the learning of data representations. 

Therefore, this paper presents a combination of Principal Component Analysis (PCA) and Expectation 

Maximization (EM) for intelligent clustering, and a supervised Deep Neural Network (DNN) for the training of the 

model to make predictions on attack data. In the hybrid model, PCA and EM algorithm perform dimensionality 

reduction and clustering of the attack data during the unsupervised pre-training stage of the model building. The 

output of the unsupervised pre-training is fed into the DNN for supervised training, at which point rectified linear 

units (RELUs) in the hidden layers are used to generate a cascade of concepts for making accurate predictions on 

the modeled dataset. For experimentation, we use a Python environment test bed to fully assess the performance of 

the model and report its accuracy, false positive rate, precision rate, recall rate, F-measure and entropy. The results 

obtained show a 99.8% accuracy for predicting the modeled attack types. 
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Introduction 

Cyberattacks are becoming more pervasive as new paradigms 

emerge and big data becomes more accessible.  With an 

increase in the use of the Internet as devices and objects are 

configured to seamlessly connect to each other, the attacker is 

finding new ways to deliver malicious payloads to network 

perimeters and their internal topologies.  Attack surfaces are 

expanding every year and the ability of most attackers to craft 

packets that evade network defences is gaining a new 

momentum.  Tobiyam et al. (2016), Pai et al. (2017), Asaju et 

al. (2017) posit that malicious network traffic is affecting 

millions of resources as many of the attacks involve malware 

and other forms of attacks such as denial of service and probe. 

Recent researches in machine learning have been helpful in 

predicting attacks, however, the use of task specific 

algorithms limits the extent to which predictions can be made 

hence the need for representation learning. With 

representation learning as discussed in Goodfellow et al. 

(2016), the intrinsic features of connection vectors can be 

extracted to have a cascade of concepts for the interpretation 

of different attack scenarios.  In this way, the accuracy of 

cyberattack prediction can be enhanced.  To achieve the 

proposed technique, a hybrid technique that combines 

unsupervised and supervised learning is used.   

The model in this report uses Principal Component Analysis 

(PCA) and Expectation Maximisation (EM) algorithm for 

unsupervised learning.  PCA participates in feature selection 

at the first phase of dimensionality reduction.  This generates 

a set of uncorrelated principal components while maintaining 

the variability in the data.  EM generates clusters from the 

dimensionally reduced dataset.  The clusters are used to train 

the Supervised Deep Neural Network (DNN) for making 

predictions on the modeled dataset.   

In the hidden layers of the DNN, the transformation of the 

feature space is enhanced to realise a structured interpretation 

of network traffic. Through this process, diverse attack 

scenarios can be predicted using learned attack patterns. 

Further deviations from the learned attack patterns can be 

flagged as new patterns to predict novel attacks.  The model is 

evaluated for accuracy, false positive rate, precision rate, 

recall rate, F-measure and entropy using NSL-KDD dataset on 

a python environment test bed.   

Advances in machine learning have yielded tremendous 

results in the field of deep learning. Deep learning 

architectures basically rely on non-linear activation functions 

on the hidden layers.  Längkvist et al. (2014) posits that the 

notion of non-linearity creates a model that is able to learn 

more abstract representations of the feature space.  That is, the 

lower layers are used for compressed feature representation, 

and higher layers are used to learn these representations for 

better generalisation of the feature space (Deng and Yu, 2014; 

LeCun et al., 2015).   

In deep learning, a composition of many layers is used to 

define parameterised functions such as sigmoid and rectified 

linear units (RELUs) from inputs to outputs (Abadi et al., 

2016). These parameterised functions are subsequently trained 

such that we can fit any finite set of input and output 

examples. A loss function is also defined to represent the cost 

of mismatching on the training data.  Furthermore, Cho 

(2014) and Goodfellow et al. (2016) give the conditions for a 

deep neural network as follows: 
i) We can extend the network by adding layers made up 

of multiple units  

ii) In each and every layer, the parameters are trainable.  

 

Tobiyama et al. (2016) mentioned that a deep neural network 

(DNN) is a neural network with several hidden layers. DNN 

typically learns data representations rather than perform task 

specific functions. In learning data representations, DNN 

relies on several layers of non-linear information processing.  

These layers can be adapted for supervised or unsupervised 

automatic feature learning and abstraction on several 

architectures such as deep neural networks, deep belief 

networks and recurrent neural networks (Deng and Yu, 2014; 

LeCun et al., 2015; Schmidhuber, 2015). In Tobiyama et al. 

(2016), a stepwise application of deep neural network is used 

to classify malware processes. The authors combined the 

effect of RNN and Convolutional Neural Network (CNN) to 

extract and classify features of malware process behaviour to 

report the presence or absence of a malware in a network. The 
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approach achieved an accuracy of 96% in detecting malware 

though it used 150 instances of process behaviour log files. It 

is yet unclear how the model will behave given a larger 

dataset.   

Wei et al. (2016) applied a deep learning model to mitigate 

injection attacks in smart grids. The technique could identify 

and mitigate information corruption on Wide Area Monitoring 

Systems (WAMSs).  Belanger and McCallum (2016) studied 

the use of deep learning architectures to perform 

representation learning for structured objects.  The method 

was able to make predictions using gradient descent on multi-

label classification tasks.    

Shen et al. (2018) presented an attack prediction approach 

called Tiresias xspace. This technique uses recurrent neural 

networks (RNN) to predict the likelihood of future attacks on 

a host machine using previous observations. Nguyen et al. 

(2018) presented an approach that used deep learning to detect 

and isolate cyberattacks in mobile clouds, achieving an 

accuracy of 97.11%.  Rhode et al. (2018) used recurrent 

neural networks (RNNs) to predict the state of an executable 

code as either malicious or benign. The model used a short 

snapshot of behavioural data and achieved a 94% accuracy 

within the first five seconds of execution and an accuracy of 

96.01% during the first twenty seconds of execution on 

unseen test set. Nevertheless, the RNN performed poorly for 

detecting malware at a family level when not initially trained 

on it.   

Diro and Chilamkurti (2018) used a deep learning approach to 

detect attacks in social Internet of Things (IoT). The 

distributed attack detection approach is based on IoT/Fog 

network that uses a master node for collaborative parameter 

sharing and optimisation. The approach accelerates data 

training near the source of the attack and achieved an 

accuracy of 98.27%. Furthermore, Loukas et al. (2018) 

proposed an attack detection system for vehicles using a 

combination of deep multilayer perceptron and recurrent 

neural network architecture. The approach used data captured 

in real-time for both cyber and physical processes. This data 

served as input to a neural network architecture in the form of 

time series data. Experiments were conducted based on denial 

of service, command injection and malware attacks with an 

accuracy of 86.9% achieved.   

Also, a deep learning approach for feature learning and 

dimensionality reduction was proposed in Al-Qatf et al. 

(2018). The model was able to decreasetraining and testing 

time, and couldenhance the attack prediction accuracy of 

SVM. Unsupervised pre-training with sparse autoencoder was 

used to buildthe model, and the transformed feature space was 

fed into the SVM algorithm to detect attacks. A good 

detection accuracy was reported for the KDD99 and NSL-

KDD datasets. In addition, Rezvy et al. (2019) useda deep 

autoencoded dense neural network algorithm to detect attacks 

on Fifth Generation (5G) and IoT networks.  The proposed 

approachdemonstrateda 2-step detection approach with deep 

autoencoders used for unsupervised pre-training to reduce 

high dimensional data to low-dimensional representation. In 

the second stage, the approach performed supervised 

classification with a deep neural network to achieve good 

performance with an accuracy of 99.9%.   

Vinayakumar et al. (2019) presented an approach called scale-

hybrid-IDS-AlertNet. This approach can be applied to the 

monitoring of network traffic in real time in order to indicate 

the presence of anomalies representing attacks in network 

traffic. Scale-hybrid-IDS-AlertNetuseddistributed and parallel 

machine learning algorithms with a diversity of optimisation 

techniques for handling a huge number of network and host-

level events.   

A technique that pooled the effect of improved Genetic 

Algorithm (GA) and Deep Belief Network (DBN) to develop 

an adaptive model for detecting attacks on IoT was studied in 

Zhang et al. (2019).  For the experimentation, NSL-KDD 

dataset was used to simulate and evaluate the modelto 

recognise attacks. An accuracy of 99.45% for DoS attacks was 

achieved. In the GA-DBN model, GA was used to select an 

optimal network structure through multiple iterations on the 

attack dataset. The DBN then deploys the optimal network 

structure for the classifying of attacks thus enhancing the 

classification accuracy.   

 

Unsupervised pre-training  

This section will provide an insight into the relevance of the 

preliminary stage of unsupervised pre-training in the proposed 

model. Since this approach is based on a deep feedforward 

network that leverages structured data with entity embedding, 

it is significant to solve the problem of spontaneous 

classification for the existing statistical variance on a large 

dataset. This is relevant for enhancing the extraction of useful 

information from a large amount of samples.   

Most extant prediction approaches find it difficult to cope 

with this variance due to statistical noise resulting in 

intermittent failures at different timestamps, at which points 

attacks can easily infiltrate a network. What is required, 

therefore, is the ability to abstract the noise away in order to 

capture the useful information from the large attack dataset.  

This necessitates the use of an unsupervised pre-training 

process based on Principal Component Analysis (PCA) and 

Expectation Maximisation (EM) clustering. Prior to feeding 

the neural network with the attack dataset, it is important to 

remove redundant data and also convert the data to numeric 

feature vectors. Initially, PCA is used to perform a 

preliminary compression of the feature space to serve as input 

into a latent space representation as opined by Vasan and 

Surendiran (2016). PCA automaticallysearches for the 

principal components relevant for expressing the intrinsic 

information in the data. That is, it performs feature selection, 

in which case it transforms the data space into a feature space 

that retains the same dimension as the original data.   

In dimensionality reduction with PCA, the number of features 

required for the effective representation of data can be 

reduced by eliminating linear combinations with small 

variances while retaining terms with large variances. This is 

achieved by computing the largest k eigenvalues of the 

correlation matrix R ((Jolliffe and Cadima, 2016; Goodfellow 

et al., 2016).   
In reality, PCA performs a linear projection from the data 

space (say 𝑅𝑖 to the feature space (𝑅𝑘), resulting in an 

approximate representation of the input data vector.  De la 

Hoz et al. (2015) claims that this encoding process produces a 

vector of principal components, which has a more reduced 

feature space than the original dataset.  In the same sense, the 

original data vector can be reconstructed from the vector of 

principal components through decoding. Here, a linear 

projection from  (𝑅𝑘) to (𝑅𝑖) is performed. That is, a 

mapping is performed from the feature space to the data space 

to reconstruct the original input vector. 

In the next stage of the unsupervised pre-training procedure, 

the expectation maximisation (EM) algorithm is used. The 

features produced at the previous level of the pre-training with 

PCA are taken as inputs to the EM algorithm.  The resulting 

clusters are used as initialisation to the deep supervised neural 

network. The EM finds maximum likelihood parameters of a 

statistical model where the equations cannot be solved 

directly.  In the actual sense, these models include latent 

variables in addition to unknown parameters and known data 

observations (Kishor and Venkateswarlu, 2016).   

The choice of the EM algorithm in this work is based on its 

flexibility with cluster covariance. To this effect, and due to 

the standard deviation parameters, the clusters can be of any 
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elliptical shape. The EM algorithm also uses probabilities and 

as such can have multiple clusters per data point. Assuming a 

data point, say 𝑥𝑖falls between two overlapping clusters, its 

class can be defined by stating that 𝑥𝑖 belongs y-percent to 

class A and z-percent to class B.  In this way, mixed 

membership is supported by the EM algorithm (Do and 

Batzoglou, 2008). 

The goal of using pre-trained weights for the deep neural 

network rather than random initialised weights is to optimise 

the performance of the supervised deep learning predictor.  

The starting point in parameter space is a significant factor for 

a better optimisation and generalisation of the problem space.  

Using random inputs may likely propagate the error across the 

multi-layer structure of the network.  Erhan et al. (2010) 

mentioned that the non-linearity of the layers of the deep 

neural network yields an error surface that is non-convex and 

difficult to optimise.  With a possible resulting local minima, 

the unsupervised pre-training procedure is targeted at yielding 

better generalisation or test error that leads to a better 

performance of the predictor. 

 

Our Approach  
With the limitations of task specific algorithms and ongoing 

researches in deep learning, it is imperative to develop new 

models for predicting attacks as attack surfaces escalate. 

There is no single approach we can rely on since the vastness 

of the cyberspace portends new challenges at varying 

timestamps arising from the emergence of new paradigms and 

disruptive technologies. Subsequently, in this report, a 

combination of techniques is used to realise an efficient model 

for predicting cyberattacks.   

First, the alerts collected from different sources are filtered to 

discriminate attack vectors from normal connection vectors. 

Then, the connection vectors undergo two learning processes. 

First, unsupervised learning is used to perform preliminary 

dimensionality reduction and clustering.  At the second stage, 

supervised deep learning is used to train the model for making 

predictions on test data. The model uses a feed forward deep 

neural network (DNN) with n-hidden dense layers and a 

Softmax layer for classifying network attacks into one of the 

classes of DoS, Probe, R2L, U2R, and Normal connection 

vectors. The entre prediction process is modeled as a multi-

label classification problem. 

Architecture of the Proposed Approach 

The architecture of the proposed approach is depicted in Fig. 

1. As shown in the model, network traffic goes through a filter 

that discriminates potential alerts and directs them to an alert 

database while conceived benign traffic is directed towards 

the normalisation module. The potential attack vectors, which 

are indicated in the alert database are then sent to the 

normalisation module to undergo two basic processes. These 

include the replacement of missing values in the modeled 

dataset and Binarisation. At the completion of these processes, 

the captured traffic undergoes initial dimensionality reduction, 

in which case, PCA is used to scale the dataset to a set of p 

uncorrelated principal components (Jolliffe and Cadima, 

2016). 

 

 

 
Fig. 1: Architecture of the ensemble technique 

 

To enhance the training of the model and prediction accuracy, 

the reduced feature space is clustered using Expectation 

Maximisation (EM) algorithm to generate a set of k-clusters.  

These k-set of clusters represent hyper-alerts with labels 

generated automatically by the EM clustering algorithm.  The 

cluster labels determine the class to which a certain 

connection vector belongs, which can be an attack or normal 

class.   

For the training of the model, a supervised DNN is used. The 

model is trained per cluster using a number of n-epochs, n is 

chosen to avoid overfitting.  The output of the model is the 

predicted attack classes.  Furthermore, the analysis of the 

prediction is based on performance metrics such as accuracy 

(ACC), false positive rate (FPR), precision rate (PR), recall 

rate (RR), F-measure (F) and entropy (E). The components of 

the model are described in subsequent sections. 

The components of the model are described in subsequent 

sections. 

I. Network traffic capture: The first component 

represents the capture of network traffic from different 

sources across the network perimeter. Each instance of 
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network traffic capture is a connection vector. We 

define a vector of features for each connection as: 

𝑣𝑛 = {𝑓1, 𝑓2, … , 𝑓𝑚}        (1) 

Where fm is the number of features in the 

connection vector 

 

II. Network traffic discrimination: At this stage, an 

attack or normal connection vector is identified using a 

feature vector. This feature vector consists of 41 

features, some of which include protocol type, service, 

flag, source and destination bytes. The feature vector 

depicting an alert is stored in an alert database, and 

other feature vectors are combined with the flagged 

alerts for normalisation.   

III. Normalization: To achieve an error-free prediction, 

the captured alerts and non-alerts data are normalised.  

Missing values are replaced and categorical values are 

identified and converted to nominal values.   

IV. Dimensionality reduction: At stage 4, dimensionality 

reduction is performed on the dataset to generate a set 

of p uncorrelated principal components from the 

correlated connection vectors. PCA is used for this 

purpose to reduce the feature space while still 

maintaining the variability in the dataset.  Given the 

dataset, D, with n-instances and p features or 

variables, PCA generates 𝑚𝑖𝑛(𝑛 − 1|, 𝑝) distinct 

principal components from which the target output can 

be reconstructed That is, 

𝑑 = 𝐷(𝑚𝑖𝑛(𝑛 − 1), 𝑝) (2) 

 

V. Clustering: The compressed dataset, d, is used to 

automatically generate k-clusters with the EM 

algorithm.  Clustering is relevant, in this context, to 

enhance the training of the model by automatically 

categorizing attack data. This can be very helpful in 

the early stages of an attack. The EM algorithm 

performs parameter estimation in probabilistic models 

even when the data is incomplete. In other words, the 

EM algorithm measures the distances between data 

points based on probability distributions.  Kishor and 

Venkateswarlu (2016) and Pai et al. (2017) mention 

that these distributions are re-estimated at each step of 

the algorithm’s 2-step iterative process.   

EM achieves clustering by initialising the mean and 

variance as the parameters for k probability 

distributions. The algorithm then alternates between 

the 2-step iterative processes as follows: 

a) E Step: the probabilities required in the M Step 

are computed using the current estimates of the 

distribution parameters 

b) M Step: the distribution parameters with respect to 

maximum likelihood estimators are then 

recomputed using the probabilities from the E 

Step.  

The shape of the cluster changes as these parameters 

are recomputed iteratively until the k-clusters are 

generated. Therefore, if we represent the EM 

algorithm as 𝜃, we have: 

dk = θ(d)k = θ(x, y)   (3) 

Where; dk is the clustered dataset by applying the 

EM algorithm, 𝜃 on d, k represents an automatically 

generated number of clusters on d. Since the dataset 

is 2-dimensional with the instances as a matrix, x[n, 

m], and the class labels as a vector, y, fitting x and  

y into the EM algorithm will generate a 

function𝜃(𝑥, 𝑦), to match the instances (data points) 

to the class labels prior to input to the DNN. The 

𝑘𝑡ℎ cluster in dk is represented as 𝜇𝑘. 

 

VI. Supervised deep learning: At the DNN, the model is 

trained using the constructed k-clusters and cluster 

labels, generated with the EM algorithm.  The DD is a 

Feed Forward (FF) DNN with 5 layers (1 input layer, 

3 hidden dense layers (ℎ𝑖 , 1 ≤ 𝑖 ≤ 3), and 1 output 

layer).  The FF DNN is trained with the k-clusters fed 

into the input layer of 1000 units.  In the hidden dense 

layers of 750, 500, and 250 units respectively, the 

model learns the data representation of the different 

attack types using the input (k-clusters). The DNN 

also performs secondary dimensionality reduction for 

feature abstraction at this stage.  In the output, there 

are 5 units depicting the modeled attack types and 

normal connection.    

Rectified linear units (ReLU) are used in the hidden 

layers of the model as the activation function. In the 

process of classifying an attack type, 𝑦𝑘, the model 

learns the function: 

𝑓(𝜇) = 𝑚𝑎𝑥(𝜇, 0)  (4) 

 

The output of 𝑓(𝜇) is 0 for 𝑘 < 0, otherwise the 

output is equal to the input, which is an approximation 

to the identity function.  That is, the model will output 

𝑦𝑘 that is equivalent to 𝜇𝑘.  Some constraints are used 

on the DNN to enhance the learning of the identity 

function as discussed in Agarap (2018).  These 

constraints include placing a limit on the number of 

hidden layers that represent a cascade of concepts for 

developing feature representations.  This is essential to 

discover patterns in the data for predicting the 

modeled attack types and also avoid such challenges 

as overfitting. The DNN is shown in Fig. 2.   

 

 
Fig. 2: The feed forward deep neural network of 

the model 

 

VII. Prediction module: At the hidden layers, the network 

can learn a compressed representation of each cluster, 

𝜇𝑘. The Softmax function is used to classify this 

compressed representation at the output layer. With the 

Softmax function, the output is partitioned such that the 

total sum is 1, an equivalent of a categorical probability 

distribution (Agarap, 2018).  In this sense, the final 

layer consists of one neuron for each of the attack 

classes.  Each attack class returns a value between 0 and 

1, which is inferred as a probability.  This results in an 

output with a probability that sums to 1. 

The probability of an attack, is computed by applying 

the Softmax function to each cluster class value, that is: 

�́� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑘) =
𝑒𝑦𝑘

∑ 𝑒𝑦𝑘𝑛
𝑘=1

  (5) 

�́� is the predicted class. A standard categorical cross-entropy 

loss function is used at the output layer.  The model is trained 

with an initial learning rate of 0.1 and optimized using the 

stochastic gradient descent (SGD) algorithm. Predictions are 

made using equation (5), and the range of �́�, which is (0, 1) 

indicates the accuracy of predictions. To validate the model, a 

value of  0.8 ≤ �́� ≤ 1 indicates very high performance while 

�́�<0.5 is indicative of a poor predictor. For 0.5 ≤ �́� < 0.8, an 
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average performance is reported. The ranges of values for 

validating the model are given in Table 1. 

 

Table 1:  Range of �́� for validating the model’s 

performance  

Range of �́� Model Performance 

0.8 ≤ �́� ≤ 1 High (acceptable) 

0.5 ≤ �́� < 0.8 Average  

�́�<0.5 Poor 

 

The predictions of the model are analysed using a confusion 

matrix. From the confusion matrix, the following performance 

metrics are computed (Milenkoski et al, 2015): 

i) Accuracy of prediction (ACC): the rate of 

instances of attacks or normal connections predicted 

correctly. This is calculated as: 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
  (6) 

Where, TP is True Positive: correct positive 

prediction; TN is True Negative: correct negative 

prediction; FN is False Negative: incorrect negative 

prediction; FP is False Positive: incorrect positive 

prediction. 

 

ii) False positive rate (FPR):  the rate of instances of 

attacks predicted as normal connections or vice 

versa denoted by: 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
   (7) 

iii) Precision rate (PR): the fraction of relevant 

instances in the dataset given as: 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (8) 

iv) Recall rate (RR):  the retrieved relevant instances 

over the total amount of relevant instances.  RR 

calculated as shown in equation (7): 

𝑅𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (9) 

v) F-Measure (F-Score or F1): a measure of the 

accuracy of the model computed as the weighted 

harmonic mean of the precision and recall of the 

model. F-measure is denoted by: 

𝐹1 = 2𝑥
𝑃𝑅.𝑅𝑅

𝑃𝑅+𝑅𝑅
  (10) 

vi) Cross Entropy (E): a measure of the performance 

of a classification model whose output is a 

probability value between 0 and 1. That is, 

𝐸 = −∑ 𝑦𝑖𝑙𝑜𝑔(�́�𝑖)
𝑛
𝑖=1   (11) 

 

In this case, n is the number of classes, y is the true class 

value and �́� is the predicted class value.  A good model will 

have E that is 0 or close to 0. The consideration of the value of 

E is used to assess the efficiency of the model, i.e. E <0.15 is 

used as the benchmark for determining good performance by 

the model. 

The accuracy of prediction is interpreted by comparing each 

output from the Softmax layer with its corresponding true 

value.  That is, the true values are one-hot-encoded such that a 

value of one (1) appears in the column corresponding to the 

correct attack class, otherwise a value of zero (0) is shown 

(Montavon et al., 2018).   

Data preparation 

The model is validated using the NSL-KDD dataset. This 

dataset has 41 features with a large number of connection 

vectors labelled as either normal or a specific attack type. The 

NSL-KDD dataset is an enhanced and reduced version of 

KDDCup’99 dataset. It contains 22 attack types in the training 

set and 37 attack types in the test set. The general classes of 

attacks in the dataset are probe, denial of service (dos), remote 

to local (r2l), and user to root (u2r) attacks (Dhanabal and 

Shantharajah, 2015). Twenty percent (20%) of the original 

NSL-KDD dataset (with 25, 192 connection vectors) is used 

for the training and testing of the model. A test split of 30% of 

the original dataset is used for the validation of the model. 

The number of connection vectors in the dataset is given in 

Table 2. 

 

Table 2: Summary of the number of connection vectors 

used for the experiments 

Connection Vector 
Number of 

Instances 
% of Total 

Normal 13, 449 53.39 

Denial of Service (DoS) 9,234 36.65 

Probe 2,289 9.09 

Root to Local (R2L) 209 0.83 

User to Root (U2R) 11 0.04 

Total 25, 192 100.00 

 

Feature ranking 

The model was trained using an automatically generated 

number of clusters (k-clusters) from the set of 41 features in 

the NSL-KDD dataset. The k-clusters were formed from a 

dimensionally reduced dataset, d, using PCA. PCA generated 

p-principal components, representing a compressed feature 

space as mentioned in Vasan and Surendiran (2016).   

Deep learning can perform optimally with a few features 

based on its representation learning structure.  Consequently, 

PCA was vital to enhancing the selection of the features that 

contribute to the representation of the internal structure of the 

data. With PCA, the variance in the data was optimised to 

generate the representative subset of features for training the 

model. 

The model is trained using 70% of the 25,192 instances used 

and was able to generalize to an unknown dataset while 

deriving an accurate estimate of model prediction 

performance.  

Testbed of the experiment 

The DNN is implemented using a TensorFlow backend in 

Python 3.6 on an Ubuntu 18.04 64-bit operating system with. 

Keras and ScikitLearn libraries (Abadi et al., 2016; Gulli and 

Pal, 2017; Hackeling, 2017; Ketkar, 2017). TensorFlow is a 

symbolic math library for machine learning applications such 

as neural networks.  As discussed in Abadi et al. (2016) and 

Ramsundar and Zadeh (2018), TensorFlow computations are 

expressed as stateful dataflow graphs for high performance 

numerical computations across a variety of platforms (CPUs 

and GPUs).  These stateful graphs allow neural networks to 

perform operations on multidimensional data arrays composed 

of scalars, vectors and matrices (Wongsuphasawat et al., 

2018).   

Keras, which is an open-source neural network library runs on 

the TensorFlow backend to enable a fast implementation of 

the deep neural network.  At the same time, Scikit-learn, 

which is used for machine learning contains a collection of 

classification, regression and  clustering algorithms.  This 

software machine learning library also interoperates with the 

Python numerical and scientific libraries called NumPy and 

SciPy (Gulli and Pal, 2017; Hackeling, 2017). The system 

properties of the machine used for experimentation are shown 

in Table 3. 

 

Table 3: System properties of the implementation machine 
Host Operating 

System 
Ubuntu 18.04 

Processor  Intel ® Core ™ i3 6100U CPU @2.30 GHz 

2.30GHz 

RAM 4.00GB 
System Type 64-bit Operating System, x-64 based 

processor  
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Experimental Results and Discussion 

The model is trained over 100, 200, and 500 epochs 

respectively.  For each training period, the performance of the 

model was recorded using such metrics as accuracy, recall 

rate, precision rate, F-measure and cross entropy. The results 

obtained by the model at the end of the train and test phases of 

the implementation are shown in Table 4. The summary of the 

model’s performance is based on 5 class labels (normal, dos, 

probe, r2l, and u2r). 

As shown in Table 4, the model shows improved performance 

as the number of epochs increased.  This implies that the 

model is able to learn more abstracted features of the dataset 

during the training phase at each layer to make better 

generalisations for predicting the modeled attack types while 

minimising the cross entropy loss and the false positive rate.   

Using Figs. 8, 9 and 10, the accuracy and cross entropy loss of 

the model are depicted to provide visualisations of the 

evaluation of the model. These visualisations were produced 

by plotting the accuracy and cross entropy loss of the model 

against the number of epochs during the training and testing 

phases of the experimentation. For all cases, the model shows 

an improvement in the training phase over the number of 

iterations (epochs) used. 

 

 

Table 4:  Results of model’s performance over 100, 200, and 500 epochs  

Epochs Metrics 100 200 500 

ACC 99.83730217423458 99.88170930060623 99.8963423663557 

RR 99.87586891757697 99.95033523714925 99.92537313432835 

FPR 0.0021953896816684962 0.0021929824561403508 0.0014635931211123307 

PR 99.85107967237528 99.85115355991068 99.90052225814475 

F-Measure 99.86347275660916 99.90071978158352 99.91294615097624 

Cross Entropy 0.0014880938621971204 0.0014873560877253463 0.000994282463345708 

 

 

 
Fig. 8:  Accuracy and cross entropy loss of the model for 100 epochs 

 

 

 
Fig. 9:  Accuracy and cross entropy loss of the model for 200 epochs 
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Fig. 10:  Accuracy and cross entropy loss of the model for 500 epochs 

 

 

As shown in Fig. 8, a prediction accuracy of 99.837% was 

achieved by the model over 100 epochs with an entropy loss 

of 0.00148809. It can be seen that as the accuracy goes to 1 

(or 100%), the entropy loss tends to 0 indicating a very good 

model. This accuracy improves to 99.882% over 200 epochs 

while a decrease in the entropy loss (0.00148735) is also 

recorded as illustrated in Fig. 9. With the model showing the 

tendency to improve through the results already obtained, 

further experiments were conducted over 500 epochs. The 

results obtained show an improvement of 0.0146%, that is, at 

500 epochs, a prediction accuracy of 99.896% was achieved, 

which is higher than previous results. Similarly, a cross 

entropy loss of 0.00099428 was obtained. This is represented 

in Fig. 10. 

In each layer of the DNN, an abstracted representation of the 

data from a preceding layer is used as its current input, which 

it learns from. This learning process allows the model to make 

predictions using test data split from the given dataset. The 

test plots also illustrate good performance by the model, that 

is, the model gneralises to test data to make accurate 

predictions.   

From Table 4, the false positive rates (FPR) for the three 

levels of iterations (i.e. 100, 200 and 500) were extremely 

low. An FPR value is low when it goes towards zero (0). A 

high FPR value implies a poor predictor while a low FPR 

value indicates a very good predictor as achieved by the 

model in this research. The lowest FPR value of 0.001463593 

was achieved over 500 epochs, indicating a point at which the 

model is stable. Conversely, the precision and recall rates as 

well as the F-Measure values from the experiments were 

above 99%, thus validating the efficiency of the ensemble 

model.   

In this approach, a Softmax function is used at the output 

layer with classification probability �́�delivered by equation 

(9). The range of �́�is (0, 1), equivalently (0, 100), thus the 

model demonstrates more than 99% prediction accuracy as 

depicted by the test plots of Figs. 8, 9 and 10.  Similarly, the 

cross entropy loss of the model indicates a good classifier.  

FPR values, which are used as prediction errors of the model 

were minimal, implying that only a few instances of the attack 

data were misclassified or predicted.   

Comparison of Results 

The results of experimentation of the proposed model will be 

benchmarked against extant state-of-the-art approaches in the 

field of deep learning. There is recent research focus on deep 

learning models for cyberattack and malware detection, 

classification and prediction. While every system comes with 

inherent limitations as no system can be 100% efficient, there 

is the need to appraise minor significant improvements in the 

implementation of a given system to ascertain its relevance in 

the context of use.  

Consequently, the performance of the proposed model is 

benchmarked against the works of Tobiyama et al. (2016), 

Rhode et al. (2018), Nguyen et al. (2018), Diro and 

Chilamkurti (2018).  The results of comparison are given in 

Table 5. 

 

Table 5: Performance comparison of the proposed model 

with extant State-of-the-art Approaches 

Approach Accuracy 
False Positive 

Rate 

Proposed Approach  99.8% 0.00146 

Tobiyama et al. (2016) 96%  

Rhode et al. (2018) 96.01% 3.17 

Nguyen et al. (2018) 97.11% 2.89 

Diro & Chilamkurti (2018) 98.27% 2.57 

 
The comparison in Table 5 shows that the proposed model can 

perform well in the prediction of cyber-attacks. A very high 

accuracy of 99.8% and FPR of 0.00146 shows that the model 

outperforms similar models. The ensemble prediction 

approach is therefore fit for purpose in the prediction of 

cyberattacks.  

 

Conclusion 
In this report, an ensemble technique for predicting 

cyberattacks is introduced. To predict attacks, it is significant 

to use representation learning to tune the parameters of a 

model rather than depending on task specific algorithm. Deep 

learning performs representation learning by extracting and 

abstracting features in order to perform non-linear 

transformation of the input data to deliver compressed feature 

space. The model learns the features to optimally choose at 

each layer for enhance classification of the multi-label 

problem. The participation of PCA and the EM algorithm at 

the initial stage improves the learning process of the deep 

neural network through cluster-based training. The model is 

evaluated using NSL-KDD dataset. With NSL-KDD dataset 

having a large set of connection vectors, the model is tuned to 

learn different attack types to make accurate predictions. The 

results obtained show a 99.8% prediction accuracy for the 

modeled attack types. 
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