
FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

015

AN IMPROVED CYBERATTACK PREDICTION TECHNIQUE WITH

INTELLIGENT CLUSTERING AND DEEP NEURAL NETWORK

Ayei E. Ibor1*, Florence A. Oladeji2, Olusoji B. Okunoye2, and Obeten O. Ekabua1
1Department of Computer Science, University of Calabar, Calabar, Nigeria

2Department of Computer Sciences, University of Lagos, Lagos, Nigeria
*Corresponding author: ayei.ibor@gmail.com

Received: October 27, 2019 Accepted: January 11, 2020

Abstract: One of the most damaging security threats on the Internet today is cyberattacks. As new paradigms emerge, new

vulnerabilities and flaws are discovered on a daily basis. These vulnerabilities have been consistently exploited by

malicious users to stage cyberattacks, which erode the confidentiality, integrity and availability of critical data, and

other computing resources. In recent times, the research focus has been on signature based and anomaly detection

approaches. However, the challenges of using known attack signatures and profiles have made the prediction of

attacks an elusive and cumbersome activity. The use of task specific algorithms has also created more setbacks in

cyberattack prediction, hence the need for new approaches that exploit the learning of data representations.

Therefore, this paper presents a combination of Principal Component Analysis (PCA) and Expectation

Maximization (EM) for intelligent clustering, and a supervised Deep Neural Network (DNN) for the training of the

model to make predictions on attack data. In the hybrid model, PCA and EM algorithm perform dimensionality

reduction and clustering of the attack data during the unsupervised pre-training stage of the model building. The

output of the unsupervised pre-training is fed into the DNN for supervised training, at which point rectified linear

units (RELUs) in the hidden layers are used to generate a cascade of concepts for making accurate predictions on

the modeled dataset. For experimentation, we use a Python environment test bed to fully assess the performance of

the model and report its accuracy, false positive rate, precision rate, recall rate, F-measure and entropy. The results

obtained show a 99.8% accuracy for predicting the modeled attack types.

Keywords: Cyberattacks, cybersecurity, cyberattack prediction, expectation-maximisation, deep learning, PCA

Introduction

Cyberattacks are becoming more pervasive as new paradigms

emerge and big data becomes more accessible. With an

increase in the use of the Internet as devices and objects are

configured to seamlessly connect to each other, the attacker is

finding new ways to deliver malicious payloads to network

perimeters and their internal topologies. Attack surfaces are

expanding every year and the ability of most attackers to craft

packets that evade network defences is gaining a new

momentum. Tobiyam et al. (2016), Pai et al. (2017), Asaju et

al. (2017) posit that malicious network traffic is affecting

millions of resources as many of the attacks involve malware

and other forms of attacks such as denial of service and probe.

Recent researches in machine learning have been helpful in

predicting attacks, however, the use of task specific

algorithms limits the extent to which predictions can be made

hence the need for representation learning. With

representation learning as discussed in Goodfellow et al.

(2016), the intrinsic features of connection vectors can be

extracted to have a cascade of concepts for the interpretation

of different attack scenarios. In this way, the accuracy of

cyberattack prediction can be enhanced. To achieve the

proposed technique, a hybrid technique that combines

unsupervised and supervised learning is used.

The model in this report uses Principal Component Analysis

(PCA) and Expectation Maximisation (EM) algorithm for

unsupervised learning. PCA participates in feature selection

at the first phase of dimensionality reduction. This generates

a set of uncorrelated principal components while maintaining

the variability in the data. EM generates clusters from the

dimensionally reduced dataset. The clusters are used to train

the Supervised Deep Neural Network (DNN) for making

predictions on the modeled dataset.

In the hidden layers of the DNN, the transformation of the

feature space is enhanced to realise a structured interpretation

of network traffic. Through this process, diverse attack

scenarios can be predicted using learned attack patterns.

Further deviations from the learned attack patterns can be

flagged as new patterns to predict novel attacks. The model is

evaluated for accuracy, false positive rate, precision rate,

recall rate, F-measure and entropy using NSL-KDD dataset on

a python environment test bed.

Advances in machine learning have yielded tremendous

results in the field of deep learning. Deep learning

architectures basically rely on non-linear activation functions

on the hidden layers. Längkvist et al. (2014) posits that the

notion of non-linearity creates a model that is able to learn

more abstract representations of the feature space. That is, the

lower layers are used for compressed feature representation,

and higher layers are used to learn these representations for

better generalisation of the feature space (Deng and Yu, 2014;

LeCun et al., 2015).

In deep learning, a composition of many layers is used to

define parameterised functions such as sigmoid and rectified

linear units (RELUs) from inputs to outputs (Abadi et al.,

2016). These parameterised functions are subsequently trained

such that we can fit any finite set of input and output

examples. A loss function is also defined to represent the cost

of mismatching on the training data. Furthermore, Cho

(2014) and Goodfellow et al. (2016) give the conditions for a

deep neural network as follows:
i) We can extend the network by adding layers made up

of multiple units

ii) In each and every layer, the parameters are trainable.

Tobiyama et al. (2016) mentioned that a deep neural network

(DNN) is a neural network with several hidden layers. DNN

typically learns data representations rather than perform task

specific functions. In learning data representations, DNN

relies on several layers of non-linear information processing.

These layers can be adapted for supervised or unsupervised

automatic feature learning and abstraction on several

architectures such as deep neural networks, deep belief

networks and recurrent neural networks (Deng and Yu, 2014;

LeCun et al., 2015; Schmidhuber, 2015). In Tobiyama et al.

(2016), a stepwise application of deep neural network is used

to classify malware processes. The authors combined the

effect of RNN and Convolutional Neural Network (CNN) to

extract and classify features of malware process behaviour to

report the presence or absence of a malware in a network. The

Supported by

http://www.ftstjournal.com/
mailto:ayei.ibor@gmail.com

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

016

approach achieved an accuracy of 96% in detecting malware

though it used 150 instances of process behaviour log files. It

is yet unclear how the model will behave given a larger

dataset.

Wei et al. (2016) applied a deep learning model to mitigate

injection attacks in smart grids. The technique could identify

and mitigate information corruption on Wide Area Monitoring

Systems (WAMSs). Belanger and McCallum (2016) studied

the use of deep learning architectures to perform

representation learning for structured objects. The method

was able to make predictions using gradient descent on multi-

label classification tasks.

Shen et al. (2018) presented an attack prediction approach

called Tiresias xspace. This technique uses recurrent neural

networks (RNN) to predict the likelihood of future attacks on

a host machine using previous observations. Nguyen et al.

(2018) presented an approach that used deep learning to detect

and isolate cyberattacks in mobile clouds, achieving an

accuracy of 97.11%. Rhode et al. (2018) used recurrent

neural networks (RNNs) to predict the state of an executable

code as either malicious or benign. The model used a short

snapshot of behavioural data and achieved a 94% accuracy

within the first five seconds of execution and an accuracy of

96.01% during the first twenty seconds of execution on

unseen test set. Nevertheless, the RNN performed poorly for

detecting malware at a family level when not initially trained

on it.

Diro and Chilamkurti (2018) used a deep learning approach to

detect attacks in social Internet of Things (IoT). The

distributed attack detection approach is based on IoT/Fog

network that uses a master node for collaborative parameter

sharing and optimisation. The approach accelerates data

training near the source of the attack and achieved an

accuracy of 98.27%. Furthermore, Loukas et al. (2018)

proposed an attack detection system for vehicles using a

combination of deep multilayer perceptron and recurrent

neural network architecture. The approach used data captured

in real-time for both cyber and physical processes. This data

served as input to a neural network architecture in the form of

time series data. Experiments were conducted based on denial

of service, command injection and malware attacks with an

accuracy of 86.9% achieved.

Also, a deep learning approach for feature learning and

dimensionality reduction was proposed in Al-Qatf et al.

(2018). The model was able to decreasetraining and testing

time, and couldenhance the attack prediction accuracy of

SVM. Unsupervised pre-training with sparse autoencoder was

used to buildthe model, and the transformed feature space was

fed into the SVM algorithm to detect attacks. A good

detection accuracy was reported for the KDD99 and NSL-

KDD datasets. In addition, Rezvy et al. (2019) useda deep

autoencoded dense neural network algorithm to detect attacks

on Fifth Generation (5G) and IoT networks. The proposed

approachdemonstrateda 2-step detection approach with deep

autoencoders used for unsupervised pre-training to reduce

high dimensional data to low-dimensional representation. In

the second stage, the approach performed supervised

classification with a deep neural network to achieve good

performance with an accuracy of 99.9%.

Vinayakumar et al. (2019) presented an approach called scale-

hybrid-IDS-AlertNet. This approach can be applied to the

monitoring of network traffic in real time in order to indicate

the presence of anomalies representing attacks in network

traffic. Scale-hybrid-IDS-AlertNetuseddistributed and parallel

machine learning algorithms with a diversity of optimisation

techniques for handling a huge number of network and host-

level events.

A technique that pooled the effect of improved Genetic

Algorithm (GA) and Deep Belief Network (DBN) to develop

an adaptive model for detecting attacks on IoT was studied in

Zhang et al. (2019). For the experimentation, NSL-KDD

dataset was used to simulate and evaluate the modelto

recognise attacks. An accuracy of 99.45% for DoS attacks was

achieved. In the GA-DBN model, GA was used to select an

optimal network structure through multiple iterations on the

attack dataset. The DBN then deploys the optimal network

structure for the classifying of attacks thus enhancing the

classification accuracy.

Unsupervised pre-training

This section will provide an insight into the relevance of the

preliminary stage of unsupervised pre-training in the proposed

model. Since this approach is based on a deep feedforward

network that leverages structured data with entity embedding,

it is significant to solve the problem of spontaneous

classification for the existing statistical variance on a large

dataset. This is relevant for enhancing the extraction of useful

information from a large amount of samples.

Most extant prediction approaches find it difficult to cope

with this variance due to statistical noise resulting in

intermittent failures at different timestamps, at which points

attacks can easily infiltrate a network. What is required,

therefore, is the ability to abstract the noise away in order to

capture the useful information from the large attack dataset.

This necessitates the use of an unsupervised pre-training

process based on Principal Component Analysis (PCA) and

Expectation Maximisation (EM) clustering. Prior to feeding

the neural network with the attack dataset, it is important to

remove redundant data and also convert the data to numeric

feature vectors. Initially, PCA is used to perform a

preliminary compression of the feature space to serve as input

into a latent space representation as opined by Vasan and

Surendiran (2016). PCA automaticallysearches for the

principal components relevant for expressing the intrinsic

information in the data. That is, it performs feature selection,

in which case it transforms the data space into a feature space

that retains the same dimension as the original data.

In dimensionality reduction with PCA, the number of features

required for the effective representation of data can be

reduced by eliminating linear combinations with small

variances while retaining terms with large variances. This is

achieved by computing the largest k eigenvalues of the

correlation matrix R ((Jolliffe and Cadima, 2016; Goodfellow

et al., 2016).
In reality, PCA performs a linear projection from the data

space (say 𝑅𝑖 to the feature space (𝑅𝑘), resulting in an

approximate representation of the input data vector. De la

Hoz et al. (2015) claims that this encoding process produces a

vector of principal components, which has a more reduced

feature space than the original dataset. In the same sense, the

original data vector can be reconstructed from the vector of

principal components through decoding. Here, a linear

projection from (𝑅𝑘) to (𝑅𝑖) is performed. That is, a

mapping is performed from the feature space to the data space

to reconstruct the original input vector.

In the next stage of the unsupervised pre-training procedure,

the expectation maximisation (EM) algorithm is used. The

features produced at the previous level of the pre-training with

PCA are taken as inputs to the EM algorithm. The resulting

clusters are used as initialisation to the deep supervised neural

network. The EM finds maximum likelihood parameters of a

statistical model where the equations cannot be solved

directly. In the actual sense, these models include latent

variables in addition to unknown parameters and known data

observations (Kishor and Venkateswarlu, 2016).

The choice of the EM algorithm in this work is based on its

flexibility with cluster covariance. To this effect, and due to

the standard deviation parameters, the clusters can be of any

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

017

elliptical shape. The EM algorithm also uses probabilities and

as such can have multiple clusters per data point. Assuming a

data point, say 𝑥𝑖falls between two overlapping clusters, its

class can be defined by stating that 𝑥𝑖 belongs y-percent to

class A and z-percent to class B. In this way, mixed

membership is supported by the EM algorithm (Do and

Batzoglou, 2008).

The goal of using pre-trained weights for the deep neural

network rather than random initialised weights is to optimise

the performance of the supervised deep learning predictor.

The starting point in parameter space is a significant factor for

a better optimisation and generalisation of the problem space.

Using random inputs may likely propagate the error across the

multi-layer structure of the network. Erhan et al. (2010)

mentioned that the non-linearity of the layers of the deep

neural network yields an error surface that is non-convex and

difficult to optimise. With a possible resulting local minima,

the unsupervised pre-training procedure is targeted at yielding

better generalisation or test error that leads to a better

performance of the predictor.

Our Approach
With the limitations of task specific algorithms and ongoing

researches in deep learning, it is imperative to develop new

models for predicting attacks as attack surfaces escalate.

There is no single approach we can rely on since the vastness

of the cyberspace portends new challenges at varying

timestamps arising from the emergence of new paradigms and

disruptive technologies. Subsequently, in this report, a

combination of techniques is used to realise an efficient model

for predicting cyberattacks.

First, the alerts collected from different sources are filtered to

discriminate attack vectors from normal connection vectors.

Then, the connection vectors undergo two learning processes.

First, unsupervised learning is used to perform preliminary

dimensionality reduction and clustering. At the second stage,

supervised deep learning is used to train the model for making

predictions on test data. The model uses a feed forward deep

neural network (DNN) with n-hidden dense layers and a

Softmax layer for classifying network attacks into one of the

classes of DoS, Probe, R2L, U2R, and Normal connection

vectors. The entre prediction process is modeled as a multi-

label classification problem.

Architecture of the Proposed Approach

The architecture of the proposed approach is depicted in Fig.

1. As shown in the model, network traffic goes through a filter

that discriminates potential alerts and directs them to an alert

database while conceived benign traffic is directed towards

the normalisation module. The potential attack vectors, which

are indicated in the alert database are then sent to the

normalisation module to undergo two basic processes. These

include the replacement of missing values in the modeled

dataset and Binarisation. At the completion of these processes,

the captured traffic undergoes initial dimensionality reduction,

in which case, PCA is used to scale the dataset to a set of p

uncorrelated principal components (Jolliffe and Cadima,

2016).

Fig. 1: Architecture of the ensemble technique

To enhance the training of the model and prediction accuracy,

the reduced feature space is clustered using Expectation

Maximisation (EM) algorithm to generate a set of k-clusters.

These k-set of clusters represent hyper-alerts with labels

generated automatically by the EM clustering algorithm. The

cluster labels determine the class to which a certain

connection vector belongs, which can be an attack or normal

class.

For the training of the model, a supervised DNN is used. The

model is trained per cluster using a number of n-epochs, n is

chosen to avoid overfitting. The output of the model is the

predicted attack classes. Furthermore, the analysis of the

prediction is based on performance metrics such as accuracy

(ACC), false positive rate (FPR), precision rate (PR), recall

rate (RR), F-measure (F) and entropy (E). The components of

the model are described in subsequent sections.

The components of the model are described in subsequent

sections.

I. Network traffic capture: The first component

represents the capture of network traffic from different

sources across the network perimeter. Each instance of

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

018

network traffic capture is a connection vector. We

define a vector of features for each connection as:

𝑣𝑛 = {𝑓1, 𝑓2, … , 𝑓𝑚} (1)

Where fm is the number of features in the

connection vector

II. Network traffic discrimination: At this stage, an

attack or normal connection vector is identified using a

feature vector. This feature vector consists of 41

features, some of which include protocol type, service,

flag, source and destination bytes. The feature vector

depicting an alert is stored in an alert database, and

other feature vectors are combined with the flagged

alerts for normalisation.

III. Normalization: To achieve an error-free prediction,

the captured alerts and non-alerts data are normalised.

Missing values are replaced and categorical values are

identified and converted to nominal values.

IV. Dimensionality reduction: At stage 4, dimensionality

reduction is performed on the dataset to generate a set

of p uncorrelated principal components from the

correlated connection vectors. PCA is used for this

purpose to reduce the feature space while still

maintaining the variability in the dataset. Given the

dataset, D, with n-instances and p features or

variables, PCA generates 𝑚𝑖𝑛(𝑛 − 1|, 𝑝) distinct

principal components from which the target output can

be reconstructed That is,

𝑑 = 𝐷(𝑚𝑖𝑛(𝑛 − 1), 𝑝) (2)

V. Clustering: The compressed dataset, d, is used to

automatically generate k-clusters with the EM

algorithm. Clustering is relevant, in this context, to

enhance the training of the model by automatically

categorizing attack data. This can be very helpful in

the early stages of an attack. The EM algorithm

performs parameter estimation in probabilistic models

even when the data is incomplete. In other words, the

EM algorithm measures the distances between data

points based on probability distributions. Kishor and

Venkateswarlu (2016) and Pai et al. (2017) mention

that these distributions are re-estimated at each step of

the algorithm’s 2-step iterative process.

EM achieves clustering by initialising the mean and

variance as the parameters for k probability

distributions. The algorithm then alternates between

the 2-step iterative processes as follows:

a) E Step: the probabilities required in the M Step

are computed using the current estimates of the

distribution parameters

b) M Step: the distribution parameters with respect to

maximum likelihood estimators are then

recomputed using the probabilities from the E

Step.

The shape of the cluster changes as these parameters

are recomputed iteratively until the k-clusters are

generated. Therefore, if we represent the EM

algorithm as 𝜃, we have:

dk = θ(d)k = θ(x, y) (3)

Where; dk is the clustered dataset by applying the

EM algorithm, 𝜃 on d, k represents an automatically

generated number of clusters on d. Since the dataset

is 2-dimensional with the instances as a matrix, x[n,

m], and the class labels as a vector, y, fitting x and

y into the EM algorithm will generate a

function𝜃(𝑥, 𝑦), to match the instances (data points)

to the class labels prior to input to the DNN. The

𝑘𝑡ℎ cluster in dk is represented as 𝜇𝑘.

VI. Supervised deep learning: At the DNN, the model is

trained using the constructed k-clusters and cluster

labels, generated with the EM algorithm. The DD is a

Feed Forward (FF) DNN with 5 layers (1 input layer,

3 hidden dense layers (ℎ𝑖 , 1 ≤ 𝑖 ≤ 3), and 1 output

layer). The FF DNN is trained with the k-clusters fed

into the input layer of 1000 units. In the hidden dense

layers of 750, 500, and 250 units respectively, the

model learns the data representation of the different

attack types using the input (k-clusters). The DNN

also performs secondary dimensionality reduction for

feature abstraction at this stage. In the output, there

are 5 units depicting the modeled attack types and

normal connection.

Rectified linear units (ReLU) are used in the hidden

layers of the model as the activation function. In the

process of classifying an attack type, 𝑦𝑘, the model

learns the function:

𝑓(𝜇) = 𝑚𝑎𝑥(𝜇, 0) (4)

The output of 𝑓(𝜇) is 0 for 𝑘 < 0, otherwise the

output is equal to the input, which is an approximation

to the identity function. That is, the model will output

𝑦𝑘 that is equivalent to 𝜇𝑘. Some constraints are used

on the DNN to enhance the learning of the identity

function as discussed in Agarap (2018). These

constraints include placing a limit on the number of

hidden layers that represent a cascade of concepts for

developing feature representations. This is essential to

discover patterns in the data for predicting the

modeled attack types and also avoid such challenges

as overfitting. The DNN is shown in Fig. 2.

Fig. 2: The feed forward deep neural network of

the model

VII. Prediction module: At the hidden layers, the network

can learn a compressed representation of each cluster,

𝜇𝑘. The Softmax function is used to classify this

compressed representation at the output layer. With the

Softmax function, the output is partitioned such that the

total sum is 1, an equivalent of a categorical probability

distribution (Agarap, 2018). In this sense, the final

layer consists of one neuron for each of the attack

classes. Each attack class returns a value between 0 and

1, which is inferred as a probability. This results in an

output with a probability that sums to 1.

The probability of an attack, is computed by applying

the Softmax function to each cluster class value, that is:

𝑦́ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑘) =
𝑒𝑦𝑘

∑ 𝑒𝑦𝑘𝑛
𝑘=1

 (5)

𝑦́ is the predicted class. A standard categorical cross-entropy

loss function is used at the output layer. The model is trained

with an initial learning rate of 0.1 and optimized using the

stochastic gradient descent (SGD) algorithm. Predictions are

made using equation (5), and the range of 𝑦́, which is (0, 1)

indicates the accuracy of predictions. To validate the model, a

value of 0.8 ≤ 𝑦́ ≤ 1 indicates very high performance while

𝑦́<0.5 is indicative of a poor predictor. For 0.5 ≤ 𝑦́ < 0.8, an

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

019

average performance is reported. The ranges of values for

validating the model are given in Table 1.

Table 1: Range of 𝒚́ for validating the model’s

performance

Range of 𝑦́ Model Performance

0.8 ≤ 𝑦́ ≤ 1 High (acceptable)

0.5 ≤ 𝑦́ < 0.8 Average

𝑦́<0.5 Poor

The predictions of the model are analysed using a confusion

matrix. From the confusion matrix, the following performance

metrics are computed (Milenkoski et al, 2015):

i) Accuracy of prediction (ACC): the rate of

instances of attacks or normal connections predicted

correctly. This is calculated as:

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (6)

Where, TP is True Positive: correct positive

prediction; TN is True Negative: correct negative

prediction; FN is False Negative: incorrect negative

prediction; FP is False Positive: incorrect positive

prediction.

ii) False positive rate (FPR): the rate of instances of

attacks predicted as normal connections or vice

versa denoted by:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (7)

iii) Precision rate (PR): the fraction of relevant

instances in the dataset given as:

𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8)

iv) Recall rate (RR): the retrieved relevant instances

over the total amount of relevant instances. RR

calculated as shown in equation (7):

𝑅𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

v) F-Measure (F-Score or F1): a measure of the

accuracy of the model computed as the weighted

harmonic mean of the precision and recall of the

model. F-measure is denoted by:

𝐹1 = 2𝑥
𝑃𝑅.𝑅𝑅

𝑃𝑅+𝑅𝑅
 (10)

vi) Cross Entropy (E): a measure of the performance

of a classification model whose output is a

probability value between 0 and 1. That is,

𝐸 = −∑ 𝑦𝑖𝑙𝑜𝑔⁡(𝑦́𝑖)
𝑛
𝑖=1 (11)

In this case, n is the number of classes, y is the true class

value and 𝑦́ is the predicted class value. A good model will

have E that is 0 or close to 0. The consideration of the value of

E is used to assess the efficiency of the model, i.e. E <0.15 is

used as the benchmark for determining good performance by

the model.

The accuracy of prediction is interpreted by comparing each

output from the Softmax layer with its corresponding true

value. That is, the true values are one-hot-encoded such that a

value of one (1) appears in the column corresponding to the

correct attack class, otherwise a value of zero (0) is shown

(Montavon et al., 2018).

Data preparation

The model is validated using the NSL-KDD dataset. This

dataset has 41 features with a large number of connection

vectors labelled as either normal or a specific attack type. The

NSL-KDD dataset is an enhanced and reduced version of

KDDCup’99 dataset. It contains 22 attack types in the training

set and 37 attack types in the test set. The general classes of

attacks in the dataset are probe, denial of service (dos), remote

to local (r2l), and user to root (u2r) attacks (Dhanabal and

Shantharajah, 2015). Twenty percent (20%) of the original

NSL-KDD dataset (with 25, 192 connection vectors) is used

for the training and testing of the model. A test split of 30% of

the original dataset is used for the validation of the model.

The number of connection vectors in the dataset is given in

Table 2.

Table 2: Summary of the number of connection vectors

used for the experiments

Connection Vector
Number of

Instances
% of Total

Normal 13, 449 53.39

Denial of Service (DoS) 9,234 36.65

Probe 2,289 9.09

Root to Local (R2L) 209 0.83

User to Root (U2R) 11 0.04

Total 25, 192 100.00

Feature ranking

The model was trained using an automatically generated

number of clusters (k-clusters) from the set of 41 features in

the NSL-KDD dataset. The k-clusters were formed from a

dimensionally reduced dataset, d, using PCA. PCA generated

p-principal components, representing a compressed feature

space as mentioned in Vasan and Surendiran (2016).

Deep learning can perform optimally with a few features

based on its representation learning structure. Consequently,

PCA was vital to enhancing the selection of the features that

contribute to the representation of the internal structure of the

data. With PCA, the variance in the data was optimised to

generate the representative subset of features for training the

model.

The model is trained using 70% of the 25,192 instances used

and was able to generalize to an unknown dataset while

deriving an accurate estimate of model prediction

performance.

Testbed of the experiment

The DNN is implemented using a TensorFlow backend in

Python 3.6 on an Ubuntu 18.04 64-bit operating system with.

Keras and ScikitLearn libraries (Abadi et al., 2016; Gulli and

Pal, 2017; Hackeling, 2017; Ketkar, 2017). TensorFlow is a

symbolic math library for machine learning applications such

as neural networks. As discussed in Abadi et al. (2016) and

Ramsundar and Zadeh (2018), TensorFlow computations are

expressed as stateful dataflow graphs for high performance

numerical computations across a variety of platforms (CPUs

and GPUs). These stateful graphs allow neural networks to

perform operations on multidimensional data arrays composed

of scalars, vectors and matrices (Wongsuphasawat et al.,

2018).

Keras, which is an open-source neural network library runs on

the TensorFlow backend to enable a fast implementation of

the deep neural network. At the same time, Scikit-learn,

which is used for machine learning contains a collection of

classification, regression and clustering algorithms. This

software machine learning library also interoperates with the

Python numerical and scientific libraries called NumPy and

SciPy (Gulli and Pal, 2017; Hackeling, 2017). The system

properties of the machine used for experimentation are shown

in Table 3.

Table 3: System properties of the implementation machine
Host Operating

System
Ubuntu 18.04

Processor Intel ® Core ™ i3 6100U CPU @2.30 GHz

2.30GHz

RAM 4.00GB
System Type 64-bit Operating System, x-64 based

processor

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

020

Experimental Results and Discussion

The model is trained over 100, 200, and 500 epochs

respectively. For each training period, the performance of the

model was recorded using such metrics as accuracy, recall

rate, precision rate, F-measure and cross entropy. The results

obtained by the model at the end of the train and test phases of

the implementation are shown in Table 4. The summary of the

model’s performance is based on 5 class labels (normal, dos,

probe, r2l, and u2r).

As shown in Table 4, the model shows improved performance

as the number of epochs increased. This implies that the

model is able to learn more abstracted features of the dataset

during the training phase at each layer to make better

generalisations for predicting the modeled attack types while

minimising the cross entropy loss and the false positive rate.

Using Figs. 8, 9 and 10, the accuracy and cross entropy loss of

the model are depicted to provide visualisations of the

evaluation of the model. These visualisations were produced

by plotting the accuracy and cross entropy loss of the model

against the number of epochs during the training and testing

phases of the experimentation. For all cases, the model shows

an improvement in the training phase over the number of

iterations (epochs) used.

Table 4: Results of model’s performance over 100, 200, and 500 epochs

Epochs Metrics 100 200 500

ACC 99.83730217423458 99.88170930060623 99.8963423663557

RR 99.87586891757697 99.95033523714925 99.92537313432835

FPR 0.0021953896816684962 0.0021929824561403508 0.0014635931211123307

PR 99.85107967237528 99.85115355991068 99.90052225814475

F-Measure 99.86347275660916 99.90071978158352 99.91294615097624

Cross Entropy 0.0014880938621971204 0.0014873560877253463 0.000994282463345708

Fig. 8: Accuracy and cross entropy loss of the model for 100 epochs

Fig. 9: Accuracy and cross entropy loss of the model for 200 epochs

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

021

Fig. 10: Accuracy and cross entropy loss of the model for 500 epochs

As shown in Fig. 8, a prediction accuracy of 99.837% was

achieved by the model over 100 epochs with an entropy loss

of 0.00148809. It can be seen that as the accuracy goes to 1

(or 100%), the entropy loss tends to 0 indicating a very good

model. This accuracy improves to 99.882% over 200 epochs

while a decrease in the entropy loss (0.00148735) is also

recorded as illustrated in Fig. 9. With the model showing the

tendency to improve through the results already obtained,

further experiments were conducted over 500 epochs. The

results obtained show an improvement of 0.0146%, that is, at

500 epochs, a prediction accuracy of 99.896% was achieved,

which is higher than previous results. Similarly, a cross

entropy loss of 0.00099428 was obtained. This is represented

in Fig. 10.

In each layer of the DNN, an abstracted representation of the

data from a preceding layer is used as its current input, which

it learns from. This learning process allows the model to make

predictions using test data split from the given dataset. The

test plots also illustrate good performance by the model, that

is, the model gneralises to test data to make accurate

predictions.

From Table 4, the false positive rates (FPR) for the three

levels of iterations (i.e. 100, 200 and 500) were extremely

low. An FPR value is low when it goes towards zero (0). A

high FPR value implies a poor predictor while a low FPR

value indicates a very good predictor as achieved by the

model in this research. The lowest FPR value of 0.001463593

was achieved over 500 epochs, indicating a point at which the

model is stable. Conversely, the precision and recall rates as

well as the F-Measure values from the experiments were

above 99%, thus validating the efficiency of the ensemble

model.

In this approach, a Softmax function is used at the output

layer with classification probability 𝑦́delivered by equation

(9). The range of 𝑦́is (0, 1), equivalently (0, 100), thus the

model demonstrates more than 99% prediction accuracy as

depicted by the test plots of Figs. 8, 9 and 10. Similarly, the

cross entropy loss of the model indicates a good classifier.

FPR values, which are used as prediction errors of the model

were minimal, implying that only a few instances of the attack

data were misclassified or predicted.

Comparison of Results

The results of experimentation of the proposed model will be

benchmarked against extant state-of-the-art approaches in the

field of deep learning. There is recent research focus on deep

learning models for cyberattack and malware detection,

classification and prediction. While every system comes with

inherent limitations as no system can be 100% efficient, there

is the need to appraise minor significant improvements in the

implementation of a given system to ascertain its relevance in

the context of use.

Consequently, the performance of the proposed model is

benchmarked against the works of Tobiyama et al. (2016),

Rhode et al. (2018), Nguyen et al. (2018), Diro and

Chilamkurti (2018). The results of comparison are given in

Table 5.

Table 5: Performance comparison of the proposed model

with extant State-of-the-art Approaches

Approach Accuracy
False Positive

Rate

Proposed Approach 99.8% 0.00146

Tobiyama et al. (2016) 96%

Rhode et al. (2018) 96.01% 3.17

Nguyen et al. (2018) 97.11% 2.89

Diro & Chilamkurti (2018) 98.27% 2.57

The comparison in Table 5 shows that the proposed model can

perform well in the prediction of cyber-attacks. A very high

accuracy of 99.8% and FPR of 0.00146 shows that the model

outperforms similar models. The ensemble prediction

approach is therefore fit for purpose in the prediction of

cyberattacks.

Conclusion
In this report, an ensemble technique for predicting

cyberattacks is introduced. To predict attacks, it is significant

to use representation learning to tune the parameters of a

model rather than depending on task specific algorithm. Deep

learning performs representation learning by extracting and

abstracting features in order to perform non-linear

transformation of the input data to deliver compressed feature

space. The model learns the features to optimally choose at

each layer for enhance classification of the multi-label

problem. The participation of PCA and the EM algorithm at

the initial stage improves the learning process of the deep

neural network through cluster-based training. The model is

evaluated using NSL-KDD dataset. With NSL-KDD dataset

having a large set of connection vectors, the model is tuned to

learn different attack types to make accurate predictions. The

results obtained show a 99.8% prediction accuracy for the

modeled attack types.

Conflict of Interest

Authors declare that there is no conflict of interest related to

this study.

 References
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, ... &

Kudlur M 2016. Tensorflow: A system for large-scale

machine learning. In 12th {USENIX} Symposium on

http://www.ftstjournal.com/

A Hybrid Model for Intelligent Clustering & Deep Neural Network

FUW Trends in Science & Technology Journal, www.ftstjournal.com

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 015 – 022

022

Operating Systems Design and Implementation ({OSDI}

16) (pp. 265-283).

Agarap AF 2018. Deep Learning using Rectified Linear Units

(ReLU). arXiv preprint arXiv:1803.08375.
Al-Qatf M, Lasheng Y, Al-Habib M & Al-Sabahi K 2018.

Deep learning approach combining sparse autoencoder

with SVM for network intrusion detection. IEEE

Access, 6: 52843-52856.

Asaju LAB, Shola PB, Franklin N & Abiola HM 2017.

Intrusion detection system on a computer network using

an ensemble of randomizable filtered classifier, K-

nearest neighbor algorithm. FUW Trends in Sci. and

Techn. J., 2(1B): 550 – 553.

Belanger D & McCallum A 2016. Structured prediction

energy networks. In International Conference on

Machine Learning, pp. 983-992.

Cho K 2014. Foundations and advances in deep learning

taxonomy, and future directions. Computer

Communications, 107: 30-48.

De la Hoz E, De La Hoz E, Ortiz A, Ortega J & Prieto B

2015. PCA filtering and probabilistic SOM for network

intrusion detection. Neurocomputing, 164: 71-81.

Deng L & Yu D 2014. Deep learning: Methods and

applications. Foundations and Trends® in Signal

Processing, 7(3–4): 197-387.

Dhanabal L & Shantharajah SP 2015. A study on NSL-KDD

dataset for intrusion detection system based on

classification algorithms. Int. J. Advanced Res. Comp.

and Commun. Engr., 4(6): 446-452.

Diro AA & Chilamkurti N 2018. Distributed attack detection

scheme using deep learning approach for internet of

things. Future Generation Computer Systems, 82: 761-

768.

Do CB & Batzoglou S 2008. What is the expectation

maximization algorithm? Nature Biotechnology, 26(8),

897.

Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P &

Bengio S 2010. Why does unsupervised pre-training help

deep learning? J. Machine Learning Res., 11: 625-660.

Goodfellow I, Bengio Y & Courville A 2016. Deep Learning.

MIT Press.

Gulli A & Pal S 2017. Deep Learning with Keras. Packt

Publishing Ltd.

Hackeling G 2017. Mastering Machine Learning with Scikit-

Learn. Packt Publishing Ltd.

Jolliffe IT & Cadima J 2016. Principal component analysis: A

review and recent developments. Phil. Trans. R. Soc.

A, 374(2065): 20150202.

Ketkar N 2017. Deep Learning with Python. Apress, pp. 159-

194.

Kishor DR & Venkateswarlu NB 2016. A novel hybridization

of expectation-maximization and K-means algorithms for

better clustering performance. Int. J. Ambient Comp. and

Intelligence (IJACI), 7(2): 47-74.

Längkvist M, Karlsson L & Loutfi A 2014. A review of

unsupervised feature learning and deep learning for time-

series modeling. Pattern Recognition Letters, 42: 11-24.

LeCun Y, Bengio Y & Hinton G 2015. Deep

learning. Nature, 521(7553): 436.

Loukas G, Vuong T, Heartfield R, Sakellari G, Yoon Y &

Gan D 2018. Cloud-based cyber-physical intrusion

detection for vehicles using deep learning. IEEE

Access, 6: 3491-3508.

Milenkoski A, Vieira M, Kounev S, Avritzer A & Payne BD

2015. Evaluating computer intrusion detection systems:

A survey of common practices. ACM Computing Surveys

(CSUR), 48(1): 12.
Montavon G, Samek W & Müller KR 2018. Methods for

interpreting and understanding deep neural

networks. Digital Signal Processing, 73: 1-15.
Nguyen KK, Hoang DT, Niyato D, Wang P, Nguyen D &

Dutkiewicz E 2018. Cyberattack detection in mobile

cloud computing: A deep learning approach. In 2018

IEEE Wireless Communications and Networking

Conference (WCNC), pp. 1-6.

Pai S, Di Troia F, Visaggio CA, Austin TH & Stamp M 2017.

Clustering for malware classification. J. Comp. Virology

and Hacking Techniques, 13(2): 95-107.

Paine TL, Khorrami P, Han W & Huang TS 2014. An analysis

of unsupervised pre-training in light of recent

advances. arXiv preprint arXiv:1412.6597.

Ramsundar B & Zadeh RB 2018. TensorFlow for Deep

Learning: from Linear Regression to Reinforcement

Learning. "O'Reilly Media, Inc.".

Rezvy S, Luo Y, Petridis M, Lasebae A & Zebin T 2019. An

efficient deep learning model for intrusion classification

and prediction in 5G and IoT networks. In 2019 53rd

Annual Conference on Information Sciences and Systems

(CISS), pp. 1-6.

Rhode M, Burnap P & Jones K 2018. Early-stage malware

prediction using recurrent neural networks. Computers &

Security, 77: 578-594.

Schmidhuber J 2015. Deep learning in neural networks: An

overview. Neural Networks, 61: 85-117.

Shen Y, Mariconti E, Vervier PA & Stringhini G 2018.

Tiresias. Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security -

CCS ’18. doi:10.1145/3243734.3243811

Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T & Yagi T

2016. Malware detection with deep neural network using

process behavior. In 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), 2:

577-582.

Vasan KK & Surendiran B 2016. Dimensionality reduction

using principal component analysis for network intrusion

detection. Perspectives in Science, 8: 510-512.

Vinayakumar R, Alazab M, Soman KP, Poornachandran P,

Al-Nemrat A & Venkatraman S 2019. Deep learning

approach for intelligent intrusion detection system. IEEE

Access, 7: 41525-41550.

Wei J & Mendis GJ 2016. A deep learning-based cyber-

physical strategy to mitigate false data injection attack in

smart grids. In 2016 Joint Workshop on Cyber-Physical

Security and Resilience in Smart Grids (CPSR-SG), pp:

1-6.

Wongsuphasawat K, Smilkov D, Wexler J, Wilson J, Mane D,

Fritz D, ... & Wattenberg M 2018. Visualizing dataflow

graphs of deep learning models in TensorFlow. IEEE

Transactions on Visualization and Computer

Graphics, 24(1): 1-12.

Zhang Y, Li P & Wang X 2019. Intrusion detection for IoT

based on improved genetic algorithm and deep belief

network. IEEE Access, 7: 31711-31722.

http://www.ftstjournal.com/

